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This paper is concerned with both small-amplitude and large-amplitude limit
cycle bifurcations of planar di!erential systems. The analysis is not restricted to
minimal models with few non-linear terms, in fact, the novel approach adopted
here is to consider di!erential equations containing highly non-linear terms in both
the damping and restoring coe$cients. The maximum number of limit cycles which
may be bifurcated in a small region of the origin is given for certain classes of the
more generalised mixed (Rayleigh}LieH nard) oscillator equations of the form
xK#( f (x)#h (xR ))xR #g (x)"0. Certain mechanical systems are investigated.

( 1999 Academic Press
1. INTRODUCTION

Limit cycles, or isolated periodic solutions, in planar di!erential systems commonly
occur when modelling both the natural and technological sciences. The di!erential
equations used to model physical systems can contain highly non-linear
relationships often derived from experimental data. The problems of determining
the maximum possible number and relative con"gurations of limit cycles for
systems of the form

dx
dt

"P(x, y),
dy
dt

"Q(x, y), (1)

where P and Q are polynomials, dates back to the early investigations of PoincareH
in the 1880's. In order to make progress with these questions, researchers have
considered both local and global bifurcations. Unfortunately, the results in the
global case number relatively few and it is only in recent years that many more
results have been found when restricting the analysis to small-amplitude limit cycle
bifurcations.
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Most of the early history in the theory of limit cycles was stimulated by practical
problems displaying periodic behaviour. For example, the di!erential equation
derived by Rayleigh [1] in 1877, related to the oscillation of a violin string, is given
by

d2x
dt2

#eA
1
3 A

dx
dtB

2
!1B

dx
dt

#x"0. (2)

Let xR "y, then equation (2) can be written as a planar system of the form

xR "y, yR "!x!eA
y2

3
!1By, (3)

where xR "dx/dt and yR "dy/dt. Following the invention of the triode vacuum tube,
which was able to produce stable self-excited oscillations of constant amplitude,
van der Pol [2] obtained the following di!erential equation to describe this
phenomenon:

d2x
dt2

#e (x2!1)
dx
dt

#x"0,

which may be transformed into a planar system of the form

xR "y, yR "!x!e(x2!1)y. (4)

Systems (3) and (4) can both display periodic behaviour.
Perhaps the most famous class of di!erential equations, which generalise equa-

tion (4), are those "rst investigated by LieH nard in 1928:

d2x
dt2

#f (x)
dx
dt

#g (x)"0,

where f and g are polynomials. In the phase plane, this becomes

xR "y, yR "!g(x)!f (x)y. (5)

The equation can be used to model resistor}inductor}capacitor circuits with
non-linear circuit elements. It can also be used to model certain mechanical
systems, where f (x) represents the damping coe$cient and g(x) the restoring force
or sti!ness. LieH nard applied the change of variable z"y!F(x), where
F(x)":x

0
f (s) ds, to obtain an equivalent system in the so-called LieH nard plane:

xR "y!F(x), yR "!g(x). (6)

Let H(i, j) denote the maximum number of global limit cycles, where i is the
degree of f and j is the degree of g, and let L denote the degree of a polynomial. The
main results, in the global case, for systems (5) and (6) are summarised below.

1. In 1928, LieH nard [3] proved that if Lg"1 and F is a continuous odd function,
which has a unique root at x"a and is monotone increasing for x*a, then
equation (6) has a unique limit cycle.

2. In 1973, Rychkov [4] proved that if Lg"1 and F is an odd polynomial of degree
"ve, then equation (6) has at most two limit cycles.
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3. In 1977, Lins de Melo and Pugh [5] proved that H (2, 1)"1. They also
conjectured that H(2m, 1)"H(2m#1, 1)"m, where m is a natural number.

4. In 1988, Coppel [6] proved that H(1, 2)"1.
5. In 1996, Dumortier and Chengzhi Li [7] proved that H(1, 3)"1.
6. In 1997, Dumortier and Chengzhi Li [8] proved that H(2, 2)"1.
7. In 1998, Khibnik et al. [9] gave partial results when Lf"2 and Lg"3.

More recently, Giacomini and Neukirch [10, 11] have introduced a new method
to investigate the limit cycles of LieH nard systems when Lg"1 and F(x) is an odd
polynomial. They are able to give algebraic approximations to the limit cycles and
obtain information on the number and bifurcation sets of the periodic solutions.
One of the most attractive properties of their method is that it is not perturbative in
nature, and so it is not necessary to have large or small parameters in order to apply
the theory. More recently, Llibre [12] has corrected one of the conjectures
proposed by Giacomini and Neukirch, and Mickens [13] has shown that the
well-known method of slowly varying amplitude and phase can be used to calculate
the stability of the limit cycles as well as reproducing results from the Melnikov
theory. The major problem with many perturbative methods is that in order to
evaluate the integrals in the unperturbed system the restoring force must be at most
cubic, and ideally linear. Hence, much interesting phenomena are missed. In
contrast, a local method is presented here which allows systems to be highly
non-linear in both the damping and restoring coe$cients.

Although the LieH nard equations appear simple enough, as shown above, the
known global results on the maximum number of limit cycles are scant. By
contrast, if the analysis is restricted to local bifurcations, then many more results
may be obtained. It would be interesting, therefore, to investigate how the local and
global results are related.

Suppose that the origin of system (5), and hence (6), is a "ne focus. Thus, the
origin is a centre for the linear system but not the non-linear system. Let H] (i, j) be
the maximum number of small-amplitude limit cycles that can bifurcate within
a small neighbourhood of the origin for system (5), where i is the degree of f and j is
the degree of g. Suppose that m and n are natural numbers. Blows et al. [14}16]
have used inductive arguments in order to prove the results below.

1. If g is odd and Lf"2m or 2m#1, then H] "m.
2. If f is even, Lf"2m, then H] "m, whatever g is.
3. If f is odd, Lf"2m#1 and Lg"2n#2 or 2n#3, then H] "m#n.
4. If Lf"2, g(x)"x#g

e
(x) , where g

e
is even and Lg"2n, then H] "n.

Recently, Christopher and Lynch [17}19] have developed a new algebraic
method for determining the Liapunov quantities and this has allowed further
computations which could not be carried out with the methods used in earlier
papers. Let x.y denote the &integer part', then the new results are listed below.

5. If Lf"2 and Lg"n, then H] "x(2n#1)/3y.
6. If Lg"2 and Lf"m, then H] "x(2m#1)/3y.
7. If Lf"3 and Lg"n, then H] "2 x3(n#2)/8y, for all 1(n)50.
8 If Lg"3 and Lf"m, then H] "2 x3(m#2)/8y, for all 1(m)50.



TABLE 1
The values HK (i, j) for varying degrees of f and g. The asterisk denotes those cases where

one more limit cycle may appear when considering complex coezcients

50 C C 38*
49 24 33 38
48 24 32 36*
F F F F

D 13 6 9 10*
e 12 6 8 10
g 11 5 7 8*
r 10 5 7 8*
e 9 4 6 8 9
e 8 4 5 6* 9

7 3 5 6 8
o 6 3 4 6 7
f 5 2 3 4 6 6

4 2 3 4 4 6 7 8 9 9
f 3 1 2 2 4 4 6 6 6* 8 8* 8* 10 10* 2 36* 38 38*

2 1 1 2 3 3 4 5 5 6 7 7 8 9 2 32 33 P

1 0 1 1 2 2 3 3 4 4 5 5 6 6 2 24 24 P

1 2 3 4 5 6 7 8 9 10 11 12 13 2 48 49 50
D e g r e e o f g

508 S. LYNCH AND C. J. CHRISTOPHER
Complementing these results is the calculation of H] when f and g are of speci"ed
degrees. The results are presented in Table 1.

The ultimate aim is to establish a general formula for H] (i, j) as a function of the
degrees of f, g and, if possible, to relate these values to the results for the bifurcations
of global limit cycles.

Consider the generalised mixed (Rayleigh}LieH nard) di!erential equations of the
form

d2x
dt2

#eAa0#a
2
x2#a

4
x4#c

2A
dx
dtB

2

B
dx
dt

#b
1
x#b

3
x3"0,

which may be written in the form

xR "y, yR "!b
1
x!b

3
x3!e(a

0
#a

2
x2#a

4
x4#c

2
y2)y. (7)

Garcia-Margallo and Bejarano [20] considered system (7) and, by applying the
generalised harmonic balance method using Jacobian elliptic functions, they
showed that there are either zero, one or two limit cycles around the origin. More
recently, the same authors [21] have shown that it is possible to have seven limit
cycles; two nests of three surrounded by a larger limit cycle. The analysis not only
works for small e but also for e"1. By considering a local analysis, Lynch [22]
investigated the same system and proved that a maximum of three small-amplitude
limit cycles could be bifurcated from the origin. It is also possible to bifurcate three
small-amplitude limit cycles simultaneously from each of two symmetric co-exist-
ing "ne foci. In the case where system (7) is complex, it can be shown that four
periodic orbits can bifurcate from each point [23].
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In order to exemplify the usefulness of local methods consider the more generalised
mixed (Rayleigh}LieH nard) di!erential equations

d2x
dt2

#( f (x)#h(xR ))
dx
dt

#g (x)"0,

which may be written in the form

xR "y, yR "!g (x)!( f (x)#h (y))y. (8)

Assume that the origin is a "ne focus; let f (x)"a
0
#a

1
x#a

2
x2#2#a

m
xm,

g(x)"x#b
2
x2#b

3
x3#2#b

n
xn and h (y)"c

1
y#c

2
y2#c

3
y3#2#c

p
yp,

(when m, n and p are natural numbers). As far as the authors are aware, systems of
form (8) with highly non-linear terms have not been investigated to-date.

In Section 2, the technique for generating small-amplitude limit cycles is brie#y
described and results are given for certain classes of systems of the form (8). Local
and global bifurcations for certain mechanical systems are discussed in Section 3.
The conclusions are presented in Section 4.

2. SMALL-AMPLITUDE LIMIT CYCLES OF THE MORE GENERALISED MIXED
(RAYLEIGH}LIED NARD) OSCILLATOR

The detailed method for obtaining the maximum number of small-amplitude
limit cycles is well documented in the literature and for LieH nard equations may
be found in references [15, 24]. A brief summary of the method is given for
completeness. It is well-known that there is a Liapunov function, <(x, y) say, such
that the rate of change of < along trajectories is given by

d<
dt

"

L<
Lx

dx
dt

#

L<
Ly

dy
dt

"g
2
r2#g

4
r4#2#g

2k
r2k#2.

The g
2k

are polynomials in the coe$cients of the system and are called the focal
values. The sign of the "rst non-zero focal value determines the stability of the
origin. The origin is a centre when all of these quantities are zero, in fact, one needs
only consider the value of g

2k
reduced modulo (g

2
, g

4
,2, g

2k~2
) in order to obtain

the Liapunov quantity ¸(k!1). One is then in a position to try to bifurcate as
many small-amplitude limit cycles as possible. The coe$cients in the Liapunov
values, ¸ (r) say, are selected such that

D¸(r) D@D¸(r#1) D and L(r) ¸(r#1)(0,

for r"0, 1,2, k!1. At each stage the origin reverses stability and a limit cycle
bifurcates in a small region of the critical point. If all of these conditions are
satis"ed, then there are exactly k small-amplitude limit cycles. Conversely, if
¸(k)O0, then at most k limit cycles can bifurcate. Sometimes it is not possible to
bifurcate the full complement of limit cycles as can be seen in the example given
later in this section.

Using similar arguments to those appearing in references [15, 24], the authors
have been able to prove the following results for system (8) when the origin is a "ne
focus.
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1. If g is odd, f is odd, Lf"2m#1 and h is odd, Lh"2p#1, then H] "m#p.
2. If f is even, Lf"2m and h is odd, then H] "m, whatever g is.
3. If g is odd, f is odd and h is even, Lh"2p#2, then H] "p.

The methods of proof involve inductive arguments very similar to those used in the
earlier papers and will not be listed here.

Consider the system

xR "y, yR "!g(x)!( f (x)#c
2
y2)y, (9)

with f even, Lf"2m and g odd, Lg"2m!1. System (9) is similar to system (7) with
more non-linear terms. Let H] (m) denote the maximum number of small-amplitude
limit cycles which can be bifurcated from the origin, then the following results have
been proven for system (9):

4. H] (1)"2, H] (2)"3, H] (3)"6, H] (4)"7 and H] (5)"10.

The proof for the case when m"5 will be given, the other results may be
obtained using similar arguments.

Lemma 1. ¹he ,rst 12 ¸iapunov quantities for system (9) when m"5 are as follows:

¸(0)"!a
0
;

¸(1)"!3c
2
!a

2
;

¸(2)"!3b
3
c
2
!a

4
;

¸(3)"!15b
5
c
2
!6c3

2
#5a

6
;

¸(4)"72b
3
c3
2
!105b

7
c
2
!35a

8
;

¸(5)"!84c5
2
#90c3

2
b2
3
#196c3

2
b
5
!315c

2
b
9
!105a

10
;

¸(6)"c3
2
(!555b

3
c2
2
#440b

3
b
5
#504b

7
);

¸(7)"c3
2
(56448c4

2
!117000b2

3
b
5
#2565b2

3
c2
2
#63700b2

5
!158760b

5
c2
2

#158760b
9
);

¸(8)"!b
3
c3
2
(!1055950b

5
c2
2
#225939c4

2
#321750b2

3
c2
2
!750000b2

3
b
5

#1225000b
5
);

¸(9)"!c3
2
(2905146000b2

3
c4
2
#1603525000000b3

5
!2070983775000b2

5
c2
2

#890432956350b
5
c4
2
!127481090247c6

2
);

¸(10)"b
3
c3
2
(!1662338750000b3

5
#2143093106250b2

5
c2
2
!914876988300b

5
c4
2

#129198395007c6
2
);

¸(11)"c7
2
(!99496813683170271962000b2

5
#84987917227714837678890b

5
c2
2

!17992465848130721750991c4
2
).

In the reduction phase of the computation substitute for a
2

from ¸(1)"0, a
4

from
¸(2)"0, a

6
from ¸(3)"0, a

8
from ¸(4)"0, a

10
from ¸(5)"0, b

7
from ¸(6)"0 and
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b
9

from ¸(7)"0. Assume that b
3

and c
2

are non-zero in the remaining substitutions
and let ¸(8)"¸(9)"¸(10)"0.

Theorem 1. At most 10 small-amplitude limit cycles may be bifurcated from the origin
of system (9) when m"5.

Proof. Set ¸(0)"¸(1)"2"¸(6)"0. Now ¸(6)"0 if either (i) c
2
"0 or (ii)

a"440b
3
b
5
!555c2

2
#504b

7
"0. If c

2
"0, then a

2
"a

4
"a

6
"a

8
"a

10
"0

and the origin is a centre by the divergence criteria. Suppose that c
2
O0, then ¸(6)

is zero if condition (ii) is satis"ed.
The Liapunov quantity ¸ (8) is equal to zero if either (iii) b

3
"0 or (iv)

!1055950b
5
c2
2
#225939c4

2
#321750b2

3
c
2
!750000b2

3
b
5
#1225000b

5
"0. Sup-

pose that condition (iii) holds, then

¸(9)"c3
2
(!116875b3

5
#151725b2

5
c2
2
!65250b

5
c4
2
#9288c6

2
),

¸(10)"0
and

¸(11)"b3
5
c
2
(317829875b2

5
!294878790b

5
c2
2
#68313816c4

2
).

Since ¸(11)O0, there can be at most 10 small-amplitude limit cycles.
Take b

3
O0 and suppose instead that condition (iv) holds. Using Groebner bases

on the REDUCE mathematical package; ¸(8)"¸(9)"¸ (10)"0 if and only if
b
3
"c

2
"0. Thus, there are at most 10 limit cycles if b

3
O0. K

Select c
2
, b

5
, b

3
, b

9
, b

7
, a

10
, a

8
, a

6
, a

4
, a

2
and a

0
such that

D¸(11) D@1 and ¸(9)¸(11)(0,

and

D¸(r) D@D¸(r#1) D and ¸(r)¸(r#1)(0,

where r"0, 1,2, 8. The perturbations are chosen one by one so that the origin
reverses stability ten times and the limit cycles which bifurcate persist.

3. LIMIT CYCLES IN CERTAIN HIGHLY NON-LINEAR MECHANICAL
SYSTEMS

The theory of local and global limit cycle bifurcations will now be applied to two
mechanical systems. The problem of surge oscillations in axial #ow compressors
was investigated by Greitzer [25] in 1976, and wing rock oscillations in aircraft
#ight dynamics were discussed by Hsu and Lan [26] in 1985. Minimal models for
both of these mechanical systems were applied by Ananthkrishnan et al. [27] in
1998. All of the analysis for these two systems to-date has been concentrated on
large-amplitude limit cycle bifurcations. The question of the maximum possible
number of limit cycles does not appear to have been addressed.

Consider the reduced two-dimensional di!erential equation derived by
Greitzer [25] to model the non-dimensional mass #ow through an axial #ow
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compressor :

d2x
dt2

#(j!g@(x))
dx
dt

#(x#g (x))"0,

or in the phase plane

xR "y yR "!x!g(x)!(j#g@(x))y, (10)

where g is odd and the restoring term contains the compressor characteristic which
relates the pressure rise across the compressor to the mass #ow through it.
Experimental studies have shown that the compressor characteristic is a highly
non-linear relationship. Note that the damping coe$cient is a derivative of the
restoring term, and therefore, is an even function. This theory may be important
when predicting surge in modern aircraft gas turbine engines.

Suppose that Lg"2n#1 and let H] (n) denote the maximum number of
small-amplitude limit cycles that can be bifurcated from the origin. Using the
results from section two, it is known that H] (n)"n for system (10); this naturally
leads to the folowing conjecture.

Conjecture 1. System (10) has at most n limit cycles surrounding the origin when
Lg"2n#1.

Two types of global limit cycle bifurcations were discussed in reference [27],
these were normal Hopf and primary Hopf-secondary saddle-node bifurcations,
respectively. Only stable limit cycles are of interest when modelling physical
systems. Consider systems of the form

x5 "f (x, k),
Figure 1. A typical Hopf bifurcation diagram. The solid curves represent stable equilibria and the
dashed curves represent unstable equilibria. The point H is the Hopf bifurcation point.



Figure 2. The two ways in which large-amplitude limit cycles may be bifurcated. The solid curves
represent the stable equilibria and the dashed curves the unstable equilibria. The point H is a Hopf
bifurcation point and SN denotes the saddle-node bifurcation point.
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where k is a scalar parameter. The analysis involved in Hopf bifurcations is well
documented in the literature, see reference [28] for instance. A typical bifurcation
diagram is given in Figure 1.

There are two possible ways in which stable large-amplitude limit cycles may be
created, the details may be found in reference [27]. The bifurcation diagrams are
given in Figure 2. In the "rst case, the system jumps from the stable critical point at



Figure 3. Possible large-amplitude limit cycle bifurcation diagrams for di!erential equaions with
highly non-linear terms.
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the origin to a stable large-amplitude limit cycle as k increases. If k is then
decreased, the reverse jump occurs at a saddle-node bifurcation point and the
system displays hysteresis as depicted by the arrows. In the second case, there is
a normal Hopf bifurcation followed by a saddle-node bifurcation to a large-
amplitude limit cycle as k is increased. When k is decreased there is a jump back to
the original stable critical point and a hysteresis loop is created.



Figure 4. Limit cycle solutions of equation (11): the crosses represent stable equilibria and the
circles denote unstable equilibria.
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If the damping or restoring coe$cients in system (10) are highly non-linear,
then more interesting behaviour is possible. The bifurcation diagrams given
in Figure 3, for example, show some of the possibilities when the damping
coe$cient is of degree 14. As a particular example, consider the following
di!erential equation:

xK#e(a
14

x14#a
12

x12#a
10

x10#a
8
x8#a

6
x6#a

4
x4#a

2
x2!a

0
)xR #x"0,

(11)

where a
14
"76)38, a

12
"!651)638, a

10
"2133)34, a

8
"!3359)997, a

6
"2598)4,

a
4
"!882 and a

2
"90. The condition, 0(e@1, is imposed to make the

computations more straightforward. The bifurcation diagram for system (11) is
given in Figure 4. As the parameter a

0
is increased and then decreased, a hysteresis

loop is formed on the branches of the smallest and largest stable limit cycles. The
central stable limit cycle is not involved in the hysteresis.

Wing rock oscillations in aircraft #ight dynamics were discussed in reference
[27]. It was concluded that the mechanism which caused large-amplitude
wing rock in aircraft could not be attributed to the non-linear damping since
the polynomial was not of su$ciently high degree. The results presented
here for small-amplitude limit cycle bifurcations would tend to suggest that
it may be the contributions from the sti!ness terms, or other highly
non-linear terms in the di!erential equations which could explain the wing rock
phenomenon.
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4. CONCLUSION

Two-dimensional di!erential equations in the plane have been investigated. The
question of the maximum number of limit cycles has been addressed to various
classes of system which can be used to model mechanical systems with highly
non-linear terms. Both small-amplitude and large-amplitude limit cycle bifurca-
tions have been considered for the model of surge oscillations in axial #ow
compressors, and wing rock oscillations in aircraft.

In summary, this paper demonstrates that non-linear terms in both the damping
and restoring coe$cients should be considered when bifurcating limit cycles. The
analysis presented here can be used on systems containing highly non-linear terms
in the di!erential equations.
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